Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany

نویسندگان

چکیده

The increasing availability and variety of global satellite products the rapid development new algorithms has provided great potential to generate a level data with different spatial, temporal, spectral resolutions. However, ability these synthetic spatiotemporal datasets accurately map monitor our planet on field or regional scale remains underexplored. This study aimed support future research efforts in estimating crop yields by identifying optimal spatial (10 m, 30 250 m) temporal (8 16 days) resolutions scale. current explored discussed suitability four (Landsat (L)-MOD13Q1 (30 8 Sentinel-2 (S)-MOD13Q1 days)) two real (MOD13Q1 (250 NDVI combined separately widely used growth models (CGMs) (World Food Studies (WOFOST), semi-empiric Light Use Efficiency approach (LUE)) for winter wheat (WW) oil seed rape (OSR) yield forecasts Bavaria (70,550 km2) year 2019. For WW OSR, products’ high resolution resulted higher accuracies using LUE WOFOST. observations (8-day) both S-MOD13Q1 L-MOD13Q1 played significant role measuring OSR. example, L- an R2 = 0.82 0.85, RMSE 5.46 5.01 dt/ha WW, 0.89 0.82, 2.23 2.11 OSR model, respectively. Similarly, 8- 16-day products, simple model (R2 0.77 relative (RRMSE) 8.17%) required fewer input parameters simulate was highly accurate, reliable, more precise than complex WOFOST 0.66 RRMSE 11.35%) parameters. Conclusively, L-MOD13Q1, combination LUE, were prominent predicting products; however, advantageous generating exploring long-term time series due Landsat since 1982, maximum m. In addition, this recommended further use its findings implementing validating regions world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Crop condition and yield simulations using Landsat and MODIS

Monitoring crop condition and yields at regional scales using imagery from operational satellites remains a challenge because of the problem in scaling local yield simulations to the regional scales. NOAA AVHRR satellite imagery has been traditionally used to monitor vegetation changes that are used indirectly to assess crop condition and yields. Additionally, the 1-km spatial resolution of NOA...

متن کامل

Mapping soil salinity using Landsat 8 images for land evaluation: A Case Study of Saveh

Introduction: As a valuable asset that play a key role in the environment, natural resources, and the production of agricultural products, soil provided an appropriate ground for plant growth and vegetation development. Therefore, any disregard to the preservation of such a valuable capital may result in food shortages, soil erosion, and degradation of natural resources. From among different i...

متن کامل

A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion

a r t i c l e i n f o The focus of the current study is to compare data fusion methods applied to sensors with medium-and high-spatial resolutions. Two documented methods are applied, the spatial and temporal adaptive reflectance fusion model (STARFM) and an unmixing-based method which proposes a Bayesian formulation to incorporate prior spectral information. Furthermore, the strengths of both ...

متن کامل

Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI

Studies related to vegetation dynamics in heterogeneous landscapes often require Normalized Difference Vegetation Index (NDVI) datasets with both high spatial resolution and frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM) for accurately and effectivel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15071830